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ABSTRACT

The flutter behavior of a simple tuned rotor with a rigid and a flexible
disk is reviewed.

In Part A, the rotor assembly is assumed fo consist of a rigid disk with
N uniform flexible blades attached around the circumference, so that the
blades are coupled only by aerodynamic forces. Both traveling wave and
standing wave flutter analyses are cénducTed, and are shown to be equivalent.
The relations between traveling and standing wave air forces are described
in detail. The standing wave analysis is shown to be more versatile for some
applications than the simpler traveling wave analysis. Applications are made
to pure bending flutter and pure torsion flutter of the rotor assembly.
Comments are made on combined bending~torsion flutter.

In Part B, the rotor disk is assumed flexible and shrouds may be present.
The blades are here coupled structurally as well as aerodynamically. The

corresponding vibration and flutter behavior is examined.
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NOMENCLATURE
A complex aerodynamic force = AR + i AI
A nondimensional complex aerodynamic force=
a real part of characteristic root, p
b semichord = ¢/2
C damping force for overall rotor mode
CF@’CFa aerodynamic force and moment coefficients
CMq’CMOL " " ! " "
c damping force for blade
c chord
Fj blade force per unit length
fj total force on blade
fD disturbance force on rotor disk
hO modal deflection at elastic axis
| moment of inertia of blade
i /-1
K stiffness for overall rotor mode
k stiffness for blade
k reduced frequency = wb/V
L average span of blade
Qh,ka comp lex aerodynamic force coefficients
M mass for overall rotor mode
M blade moment per unit length

Ar

+ i

A
I






NOMENCLATURE Continued

m mass for blade
ﬁj - tfotal moment on blade
N number of blades on rotor
n _ number of nodal diameters in overall rotor mode
p éharacTerisTic root = a + iw

909 ~generalized coordinates for a vibration mode

qoqlq2 nondimensional generalized coordinates

R radius of rotor
S static unbalance of blade
s gap between two rotor blades
T kinetic energy
T time
U potential energy
Vv velocity of flow at blade

wJ.,wO displacements of blade

W Wg " noon

aj,ao,aB twist angle of blade

ac,as modal twist about elastic axis
8 interblade phase angle = n2m/N
CA aerodynamic damping ratio
CS critical damping ratio of structure

| location of elastic axis






0,0,

@

NOMENCLATURE Continued

angular position relative to rotor-
angular position relative to fixed space
mass density ratio = m/ﬁpbzz, = 2M/ﬂpb42N
stagger angle

rotation speed of rotor

air density

s+rucfura| coupling angle

freduency of oscillations

natural frequency



PART A: RIGID DISK

Assume a balanced, tuned rotor with a rigid disk. Only aerodynamic
coupling is possible between The blades. See Fig. |. The traveling wave and
standing wave flutter behavior of the above rotor system, will be investigated

in Part A.

2. Traveling Wave Analysis (Simple)

The equations of motion for the tuned rotor on a rigid disk shown in

Fig. | can be represented by N = 23 identical blade equations of the form,

MW, + Cw; kaj = £ (1

where wJ represents the displacement of the jth blade at some reference
section. Because the blades are mounted in a circular ring, one looks for

traveling wave solutions of the form,

i(a)'t+ Jﬁ)
w; o= W, € (2)
where,
8. = 2T 3 blade location
J N
J§ = n 21T ¢ angle of blade for n

—) .
N nodal»dlams



10

hence,

interblade phase angle

»
i
S
15

For the physical significance of Eq.. (2), one takes the real barf, i.e.,

R&{WJ'} = Wom(wf;ﬁj) (2a)

This gives the instantaneous deflection of any blade j.
The airforces corresponding To Eq. (2) are represented as,

: i(wt + 8))
£ = (AR"’LAI>Woel (3)

J
These can be obtained theoretically or experimentally in cascade tunnels.
Placing the assumed solution Eq. (2) and corresponding airforces Egqs. (3) into

the basic Eg. (1) gives,

R ) t+ ) i t ) ¢ t )
— 10 W‘M £3) + Lch+3J>+ He +FJ)—_~
_ (AR+LAI>M+BJ)

2.
Real Eq.: - m + M — AR = Q

: (4)
Imag. Eq.: we - AI = O



The airforces AR’ AI are functions of reduced frequency wb/v, gap to chord
ratio s/c, interbladé phase angle B, etc.

Flutter occurs when both Eqé. (4) are satisfied. From the real equation,

. .
- A

w = *;;,,'--—V;,E (4a)

Usual ly AR << k and hence the flutter frequency will not be altered much from

the measured natural frequency, w - ‘From the imaginary equation, one has the

conditions,

If, u)c.-Ar = O —_ Flutter, (4b)
'f, we=-A;p > 0 —> Stable (4¢)
Hf, we -A; <« 0 — Unstable (4d)

Equation (4b) corresponds to the mechanical damping + aerodynamic damping = 0,
while (4c) and (4d) correspond to the total damping being positive or negative.
All interblade phase angles B should be investigated. The values of 8 that

make wc - AI < 0 are considered unstable. The value of B that makes wc - AI
most negative is the flutter that will occur rfirsf. Then, the flutter mode

would be givenlby

n = — B (4e)
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where n takes on integer values only. This results in a traveling wave with
n nodal diameters, which rotates at a speed w/n. * See Eq. (2a). The aerodyna-
mic coupling picks out the most unstable traveling wavebmode n for the rotor
assembly.

NOTE: One can always rewrite the aerodynamic force,

-Fj} = (AR+LAI) w, ueb.'(wlc " 83) (3)
in the form,
Fj:AR\MJ-‘-%EWj (5)
since, for solutions of form, W, = W, 5;‘ﬂbt1‘@d) ’ oné has
Fo= Agw, e TE) 2L 8 W, e (0 F) (5a)

Hence, it is seen that the damping coefficient AI/w, is the key coefficient
to be examined. Positive values of AI can lead to instability. Because of
interference from other blades, this AI can become positive and large.
For isolated blades, A; is usually negative (stable).

The type of flutter described by Egs. (4) can be designated as, "Single

Degree of Freedom, Traveling Wave Flutter." It represents a common type of

flutter analysis for rotor blades.
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3, Traveling Wave Analysis (Alternate)

For many analyses, it is often preferable to describe the system in

terms of the 2 overall standing wave disk modes, cos Bj and sin Bj, correspond-

ing o a given number of nodal diameters n.

Wy = Go ©wo%p) + Cb,sxu)vvpj (6)
where,
1’" 5 %5 —_— generalized coordinates
. . . 5 disk modes for nTh nodal
o B) , e B diameter
@ = hn 2‘_&[ —_— interblade phase angle

Equation (6) is a standing wave representation of the blade motions, in

contrast to the previous traveling wave representation, Eq. (2).
To obtain modal equations for a. and Ag» use Rayleigh-Ritz Method.

Kinetic energy is,
73 . 23 — 2
v - _ . . . . -
r = %:Z MW, T JzZZ V“J[‘{«CW’-PJ +15W(33_]
9= 3=

s 23 23
s[4 F e - 5 atn 2]

9=
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where mj = m = same for all blades. Now, the following useful trigonometric

summations are introduced which are valid for N > 3,

N : N
> w’Bi = ) aim N
O

J =1

I

(7)
N

=
Using these, the kinetic energy becomes,
- s 7 . ¢ L
= L 4.
T = chb'c*'z.Mvcb’S
where M = mN/2. Next, the potential energy of the system is,

2.3

23
U= 1) w4 k[ v geemni]

= 4 Kgr v +Kq

il

where K = kN/2. The incremental work of the external forces acting on the

system is,

SW = i [F;"C—j\':"s] S'WJ

=

3
'

.

w

2

e

N

b

£ = ¢ foconpi ~ i §arimpi] [ g, gl + S, aiegi]

[
[A)

N
w

£ coupd - 05 G o p) - Oy ainB) wmp) | e

)
™]

L S
\ i

|
W

B A i =), conli aingy — €545 A7) ] 9,

K2
"
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Introducing +he'+rigonome+ric summations, Eqs. (7), gives,

23 ' .

SW = [ 3 fembi — e N ] g

ra

3=t

+[; '& M”BJ - GJ;‘—-.%."'J S?s

Placing T, U, and Qi into Lagrange's equations,

i_(?l) - 2T L 22U - @
dt\ 24 24 24 ‘

gives finally the 2 equations of motion for 9 and qq defined in Eq. (6) as,

23

M&V’G+C<§¢+ K%L )

2.3

Mg, + Cge * Kgo = > § ainp)

i=i

) § cofi

(8)

where, M = mN/2, C = cN/2, K = kN/2 represent parameters for the nth circum-

ferential mode, and 8 = n2n/N is the interblade phase angle.

To obtain traveling wave solutions for Eq. (8), multiply ‘sf equation

by cos Bk, an equation by sin Bk, and add to give,

e

MW& + C'.W"'b + KW& =

23 3
= Bl ) §mpl + Awph) § 4o p)
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Then -look for traveling wave solutions of form,

t (Wt + BR)
W, = W, & (10)

Corresponding air forces are represented as,

L(wti-BJ)
o= (Ae+ LA)W, & (an
~ Placing Egs. (10) and (I1) into Eq. (9) gives,
2 L(wt + BA) . L (wt + BR) (Wt phe)
-0 Mw, e riwwCe + Kw, =

i. t 3 N .
= (ARﬂlA:) W, € ? {mpthES(m$3+am(§D
23 = ’
+ MF}LZMBJ(CJ‘M*“ lwﬁi)}
3=

Introducing the previous relations of Egs. (7) into the R.H.S. of these

equations gives,

Lot
RtH,g, = (Ae+riAf)W, € %(m§&+im5&)

Placing back into previous equations gives

- W M/e/bat/ph)+cwc/w/&/w€&)+ KML)
%(AR*":AI)MpJ‘)



Il
\®)

Real Eq.: — M+ K - f-"i Ag

(12)
Imag. Eq.:

wq - %é Ar = 0

These are the same equations as the previous Eqs. (4), since M = mN/2,
K = etc.

4. Relations between Traveling and Standing Waves

Given the traveling wave deflection,

(2)
3='_\2 3)." N

P

which physically can be represented by its real part as,

(Rmiw,g = W, wa_(wt+(35)
W, = W, w2 B) e wl — W, Amp) am bt

(13)
The corresponding airforces are

£ = (AariA)w, e 0T

Re {4] =

[

(3)
AW, v (0t +8)) = Az W, am (@4 E))
; mgj [AR W, wl - Ap woMa)é] (14)

+ A B [—AI W, celol =AW, M‘v-wt]
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The A AI are obtained from theoretical or experimental analyses of cascades

R)
with interblade phase angles, B.
Next, add 2 traveling waves of amplitude wo/2, traveling in opposite

directions (+8 and -B)

W= W [mpjmwt — A "Mm‘t]
) z »
+ Weo ['amm.ﬁj o wt + Ani:4§f<;j£~u)t ]
z |
W, = W, coeg) wewt (15)

The corresponding airforces f. are

_ N s Wi + Wo . -
—?S = oLP) J_ /\R. e cen Wt — f\r- = /Lon.UJt.]
. o + W + Wo . I
-J—C,av.__Fjl' Ag !/L_o contlot — AI e )d,wk)f]
—Mv\g)‘ A Wb et -— AR Lo st Ot

Gathering together gives,
-Fj = cn_p:)[A’ W, cox wt — Azw‘,ww’c]

. . (16)
+ Aum B) [~A+Wo et ~ A, w,,MwU-’t]



where the coefficients Al’ AZ’ A3, A4 are related to the traveling wave co-
efficients AR and AI

+

: - + -
A - AR+AR A - AI +7AI
1 2 rA """"“_“""z -
+ - R - (17)
. A ""A ' i AI —'AI
A, = __R_z__.E A, =

_ 2.

A sketch of the standing wave oscillation pattern is shown in Fig. 2

Similarly, taking two traveling waves of ampl!itude w0/2 traveling in

opposite directions and subtracting gives,
Wj “v_g[%@t - mBjth]
. 7 . .
+ !;? [.ij;ﬁkf/fz;-“’t + A By u)t;]

Wo Ainm B) A wi

!

i

(18)
W;

The corresponding airforces f. becomes,

Y + . T
{’5 = w=R) L—AR We om0t + AIM_;_amth

3
&

+ Adm §) [+ AY

+ .
Wo contot + AR W ,«,«th]
A 2

+ w«u({;)[ Ag Wo coawt — A-I _‘;’_g Wlo't]

AN

<

—Mgg[-AI Wo erwt - AR\L:_wat]
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Gathering together gives,

fj = (;rmigj [}—;Aa w, e Wt + /\4_VV5,AA- wt ]
. , ) . (19)
-+km§J[ A, w, cewt + A'WaAmet]
where AI’ Asy» A3, A, are as defined before by Egs. (17).
NOTE: One can rewrite Egs. (i5) and (16) as
w, = cli‘ coe B (20)
_ - Ar &
{’3 = Cot g ‘_Al et 7,3' 1"]
i A A = 21
+ Al - + 3
mm[ 2Ge * B2 1“]

since, for solutions of form q_ = w, cos wt, above reduce to Eqs. (15) and (I6).

Similarly, one can rewrite Eqs. (18) and (19) as,

W; “6; ) (22)

G e A A ]

b [ A A2
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since for solutions of form dq = Wy sin wt, above reduces to Eqs. (18) and

(19).

Finally, to summarize the results of this section, one can represent the

deflections and airforces in either of two forms:

(a) Traveling Wave representation,

S L(wt + B)) 2)
Wj. = Wo e
‘ L{wt+ pj)‘
‘;j = (AR+LA;) w, €& (3)
(b) Standing Wave representation,
W3 = %c coT By + %gwgJ (24)

‘Fs = Caﬂ-§3 lj ‘Gc + A, CSG é%_ $s /\4.ﬁ§5]
+ Az g
w

A % ] (25)

The standing wave coefficients Ap» Ays Az, A, are related fo the fraveling

wave coefficients Aj and Ap through Egs. (I7).
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5. Standing Wave Analysis

It is of interest to apply a conventional standing wave modal analysis
to describe the instability mechanisms described previously by the travel-
ing wave analysis. To fhis end, one describes the blade deflection, as in
Section 3, by the two overall disk modes;'

W, = Fe cov By + Gs A~ B (6)

The corresponding equations of motion for the two coordinates q and qg
c

were derived in Section 3 as,

MZB:(_ + C%‘ + K%c =)Z_: f; coe B
23 (8)

f

zij {3 A @j

3=

Mzﬁ:s + C‘:T)/s*' K‘;-s

where M, C, K, are the overall mass, damping, and stiffness of the ndt‘h

circumferential disk mode, and B = n2w/N is the interblade phase angle.
The aerodynamic forces fj corresponding to the deflection pattern Eq. (6)

was given in Section 4 by Eq. (25). Placing this fj intfo Eq. (8) gives

Mo« Che * Ko = 2 (o) [BderAg - B Ars]

A, - A, - -
2 g Ao+ 2 G5 v A

| 5N

* f«m@iwﬁi

Mg +Cq, + Ky = ;Wﬁbmsi[’%iwmr%is*Azg;]
+ Z (M@})L [—/}5- %L’A,'cz,c + %& 56,5 + A,t};]

)=
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Making use of the frigonometric summations Eqs. (7) and noting that
M= mN/2, C = cN/2, K = kN/2 where m, c, k are the effective mass, damping

and stiffness of a single blade, the above equations reduce to,

rag

1}¢ + (c_ .%3) te * (jL A )(% + é§§ i“‘ —~/\+a%$ =

3

(26)

P

ig + A,,,%c + m%s + (""'A")’Bs + (/%. A)%—s

These equaffons represent a familiar gyroscopically-coupled system. Such
equations occur for many rotating shaft and critical speed problems.

The stability of these equations can be investigated in the standard
manner by looking for solutions of the form epT. The aerodynamic co-

efficients A A3, A4 are related to the traveling wave coefficients

1> Ay
AR and AI through Eqs. (17), and are functions of frequency wb/V, inter-
blade phase angle B, and other parameters. It ié to be noted that A3 and
A4 are important coupling parameters in these equations. |If A3 = A4 = Q,
which would occur if A; = A; and A; = A;, the equations uncouple. Simple
standing wave'sblufions for . and for q  are then possible.

The general solution of Eqs. (26) can be found by assuming q —q ep1~

and qs=a'ep+. These equations then become,

mp s (R e (hen)  Srp-a, 2
(27

T e |7
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The characteristic determinant becomes,

mzlf + [Zh(c—%b)] F} + [(c—%'—)zwu :wa(k—A,)Jr

+[L(C-%L)(4L'At)“l %A*]P‘ + [(k-—A,)l-{- A:] = 0

A ]e

(28)

One solves the above Eq. (28) for the four roots, P;- Dynamic instability

is present if any.root P; has a positive real part. The associated mode

shape for any given root, p; = a + iw,is,

o =L

= omptr (e =)+ (R-A) (29)
[t Re
The corresponding deflection shape is,
pt _ Rt
w, = 1€ compy + %56 A B) (30)
For the actual physical deflection, one takes the.real part of above,
where it is understood that both p and a; may be complex, i.e., the
p=a+ iwand a; = agR + i agI' This will then result in the actual de-
flection shape for the jfh blade as,
: ) _ _ . ) A at
W:) = { ot Wt mp_) +(%,5me‘€— %SI mwt)m@g}e
(30)

= { o (Wt + ?5) + [(i"isr)/‘b\‘mwt + %SRC‘Q&){’-]M @J} ea't
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The above response wJ corresponding to the given root p; =2 + iw, indi-
cates both traveling and standing waves are generally present in the re-
sultant motion. Note, that responses such that a = 0, aéR =0, aSI =1

will represent pure undamped traveling waves.

For finding the Flutter Speed only, rather than the general transient
response of Egs. (26), one seeks solutions where the roots p; are pure
imaginary, i.e., p = iw. This gives the border!ine between deéaying and

amplifying oscillations. In Egs. (26) one assumes solutions of the form,
' LWt
Lot ‘ (31)

Placing these into Eqs. (26) gives

W+ (o_%,_)w & (’%‘AD—Az'LA* = 0 (32)

“LA;t A, —lwm - (c-%‘)ﬁ)w tE(k-P) =0 3

Dividing Eq. (33) by i gives exactly the same equation as Eq. (32).
Hence the assumed solution form, Eqs. (31), is a solution of the Egs. (26)

provided the real part and imaginary parts of Eq. (32) are satisfied, i.e.,
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+
—'A\R
Vs
Real Eq.: W m +'%'_A|—A3= o
= (34)
Imag. Eq.: W, -A,_—A4_ = O
W
N +
- Ag

Thjs is exactly the same criterion as Eq. (4), which was found previously
by the traveling wave analysis. The corresponding deflection shape is,

Wt ) wt |
W; = w,¢€ CoLB) + LW, & o B) (35)

Taking the real part of the above, gives the physical deflection shape as,

W)- = W, o=t m(gj - wom«)t ng

(36)
= W, co= (wt + gj)

This represents a pure traveling wave as given by Egs. (2a) and (2).
Thus it is seen that the standing wave analysis gives the same results as
the traveling wave analysis.

The standing wave analysis, although somewhat more involved than the
simpler traveling wave analysis described earlier in Sections 2 and 3, has

certain advantages for some problems.



(n

(2)
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I 2 modes are not exactly the same (i.e., split),

(37)

N\s %s + Cs%s R Ks%s =
one will still be able to get flutter solutions, -only now,
Fs ¥ g (38)

This gives combined traveling and standing wave solutionsat

flutter.

One can readily incorporaté Forced Vibrations into these

equations as follows,

23

.. . aevo D _
ML%G+C¢%L+KC%L = Z‘(ﬂ + £, ) e @) .
23 aevo o

Mo+ Cogyt Kog, = > (6 + 5 ) imBi

) =)

where f?ero represent the previous aerodynamic forces which

» Ld - D 1 4
depend on the blade motions de» Gcr g 9g» and fj are the dis-
turbance forces that depend on time, t. The homogeneous solu-
tion of the above equations (f? = 0) gives the previous flutter

solutions. The particular solution (f? # 0) gives the forced



(3)
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response including the aerodynamic damping from the f?ero. The
forcing function f? often arises from a steady, but non-uni-
formly distributed, entering flpw field around the disk causing

a force

D R L=

-F(é) = -ch coemb + 'Fsm Aln MO (40)

on the rotor disk stage. In the above, © represents position

th

relaTiVe to fixed space. See Fig. 3. The moving J ' blade would

then experience a force,

D

£ 0= fcoem(e,-s2¢) + §,  aonm(6,-29
41)

where ej = 2mj/N. The above could then be placed into Egs. (39)

to obtain the forced response of the rotor system.

There is the eventual possibility of using the standing wave
analysis to include stand motion, bearing motion, shaft flexi-
bitity, whirl effects, etc,, into a combined aeroelastic and

mechanical stability analysis of the rotor system.
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6. Application to Bending Flutter

The pure bending flutter of a rotor disk will be examined, using the
simplef Travéling wave theory described in Section 2. The geometrical
layout of the rofqr stage is shown in Fig. 4, and the blades are assumed
to deform in pure bending motion only. The airforces will be expressed in

terms of Whitehead's 2~dimensional, incompressible cascade theory given in

Ref. 4.

th

The aerodynamic force per unit span on the j ' blade of a cascade is

given by Whitehead as,

i(wt + g3)
FJ- = Trfvc LW W, CF?C
i(wt +8)) (42)

i

o w b* (ﬁ‘fﬁ:) W, e

where b = semichord, k = wb/V is the reduced frequency, and CFq is a
nondimensional complex coefficient depending on k, interblade phase angle
B, gap to chord ratio s/c, and stagger angle £. The total force fj, in

units of pounds, acting on the j+h blade, can be expressed as,

| I i(wt+ BJ)
f; =mgw b L L, W, (43)
where 2 is an average span of the blade, and
£, = Rg+vilyy = Z:-Fg Cr (44)

Je.
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is a nondimensional complex coefficient expressing the 1ift on the blade
due to Translafion WO of the blade at the 3/4 span reference location.
Comparing the above expression for fj with the general fj given in Eq. (3),
one notes that the aerodynamic coefficients AR and Ap for this problem
are, A

Ag = Trgwlblﬂ Lir

(45)
-AT. = TF?/A)L};_L ‘Q‘MI

The basic equations of motion for bending vibrations of the blades

Eq. (1), can be rewritten in the alternate form,

ve - 2
— ‘f‘\’\' : (46)
\\ \
C /k ;S = ') Z) Tt N

where W, is the natural frequency of a blade, and CS is the critical
damping ratio of the structural vibrations. With these definitions, and
using the relations for AR and AI given by Eqs. (45), the criterion for

instability of Eq. (4d) becomes,

2,3+ .
Wil w,m - Mewbl L. < 0 47

Recognizing from the real equation, Eq. (4a) that approximately w * W,

the above criterion reduces to
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I, + S, < 0 (48)

where one defines the important nondimensional quantities as,

—_ ‘K“I d .
A = aerodynamic
Z.ru damping ratio
(49)
= m
z mass density
Tr? b4 ratio

For instability, it is seen from Eq. (48) that the aerodynamic damping Ca
must be negative. This implies that th must be positive. Also, it is To
be noted from Eqs. (49), that for heavy blades (p large), the aerodynamic
damping becomes less effective +han the inherent structural damping Cq-
Values of lh and Ca using Whitehead's theory (Ref. 4) are shown in
Table | and Fig. 5. The aerodynamic damping is plotted against increasing
reduced velocity V/wb for several interblade phase angles B and stagger
angles & = 0 and 45°., Since A is always positive, pure bending flutter
cannot occur, according to 2-dimensional incompressible, cascade theory.
Table 2 shows values of 2h according to Theodorsen's 2-dimensional
incompressible, single airfoil theory, Ref. 5. The values resemble some-

what the B = 90° values for the zero stagger cascade analysis. Again,

pure bending flutter cannot occur.
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7. Application to Torsion Flutter

The pure torsion flutter of a rotor disk will also be examined using
tThe simplef traveling wave theory described in Section 2.  The geome+fical
layout of the rotor stage is shown in Fig. 6. It is assumea that the
blades have thin, symmetfric sections which can pivot around the midchord.
Again, Whitehead's 2-dimensional, incompressfble cascade theory in Ref. 4
will be used.

The aerodynamic moment per unit span about the elastic axis, acting

th

on the j ~ blade of a cascade is given by Whitehead as,

— x c(wt+ Bj)
Mj = TrgVG X, (CIMO(>,,' €

L(wt+By) (50)

= Tr?wz‘ b‘* [%(Cma)ﬂ] R, €

where b = semichord, k = wb/V is the reduced frequency, and (CM )n is
a nondimensional! complex coefficienT depending on elastic axis ?ocafion
n , reduced frequency k, interblade phase angle B, gap to chord ratio
s/c, and stagger angle £. The total moment ﬁj, in units of foot-pounds
acting on the jTh blade, can be expressed as,

t{wt + BJ)

— 2 4
m, = Trgwbl m, X, € (51)

where & is in an average span of the blade, and
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-

m = m + L H1q1

- f} [CM =% Gy =i 247 Gy + 'Lzmzqw] (52)

is a nondimensional complex coéfficienT expressing the moment about the
elastic axis location n. For this work,  the elastic axis location is
taken at the midchord n = .5, and the remaining coefficients CMa, CFa,

CM , and CF are tabulated in Ref. 4. Comparing the above expression for
quwiTh the general expression in the form of Eq. (3) namely,

_ ((wt+gj)
m; = (Ag+riAr)x, e (53)

~gives the aerodynamic coefficients AR and AI'for this problem as,

2 4
= Tew b £ mug
(54)

F\R
. 4
AI= Tow b £ m, .

The basic equations of motion for pure torsional vibrations of the
blades corresponding to Eq, (I) are,
T, + c&k; + ko, = wm

; | 5 (55)

or alternatively, these can be rewritten as,
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T, + 2F% w, T + Tw & = m:
j i wn Loy v Tw, o 3 (56)
\\ W N
C N y=12z, - N

where W, is the forsional natural frequency of a blade, and L is the
critical damping ratio of fthe structural vibrations. Using these new
definifions for +ofsion, and following through as in the previous bending
case in Secfion-6, the criterion for instability of Eq. (4d) reduces again

to,

:fs + ij < 0

(48)
where one now defines the important nondimensional quantities as
m
K = - ———-”-‘—E{- aerodynamic damping ratio
— wm
f” = 5 mass density ratio (57)
mg b
VR = .iE&_ radius of gyration ratio
mb*

Again, for instability, it is seen from Eq. (48) that the aerodynamic
damping QA must be negative, which implies that maI must be positive.
Also, it is again noted that for heavy blades (uraz large), the aerodynamic

damping becomes less effective than the inherent structural damping CS.
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Values of m, and Cp Using Whitehead's theory (Ref. 4) are shown in
. Table 3 and Fig. 7 for the elastic axis at midchord (n = .5). The aero-
dynamic damping is again plotted against increasing reduced velocity V/uwb
for several interblade phase angles B and stagger angles £ = 0° and 45°.
It is seen a flutter instability condition can occur for the staggered
cascade £ = 45° with interblade phase angles B ¥ 90° above reduced velo-
cities V/wb ¥ 3, However, no flutter occurs for the unstaggered £ = 0°
cascade, .

Table 4 shows values of M according to Theodorsen's 2-dimensional,
incompressibile, single airfoil theory, Ref. 5. The values resemble some-A
what the B = 90° values for the zero stagger cascade analysis. No tor-

sional flutter ihsTabiliTy occurs for these blades according to this

thoery.

8. Combined Bending-Torsion Flutter

In addition to the pure bending and pure torsion flutter considered
in the previous two sections, there is ajways the possibility, as in air-
craft wing flutter, of a coupled bending-torsion flutter of the blades.
This may arise if the center of gravity of the section does not lie on the
elastic axis, or through aerodynamic coupling between the modes. Addition-
ally, there may be structural coupling between bending and torsion through
flexible disk and shroud motions. Such structural couplings will be con-
sidered in Part B. The bending-torsion analysis here will be limited to

thin blades without shrouds, mounted on comparatively rigid disks.
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The equations of motion forbending-torsion flutter can be represented

by N = 23 identical pairs of blade equations of the form,

Mmw; + p; + C, W + oW, = ‘cj
{ .. .o . —_ - (58)
5 W) + IO(J + Ca (XJ + /an( 0() = VV\J

» ) = l) 2, s -- N

where S represents the static unbalance about the elastic axis and the
remaining quantities have been defined previously for the pure bending and
pure forsion cases. The wj and aj now represent the bending and torsion
motions of the elastic axis, and are separate degrees of freedom here.
Because the blades are mounted on a circular ring, one again looks for
Traveling wave solutions of the form,
[ (wt + B))
W, = W, e

where Wy and dO may be complex quantities. 'Note: To obtain the physical
significance of the above vibrations, one ftakes the real part as in Eq. (2a),
only now since v, and 0 may be complex, additional phasings befween the
wj and aj vibrations are possible. |

The airforces corresponding to the motions of Eqs. (59) about the

elastic axis location 1, have been given by Whitehead in Ref. 4 as,
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| ] _ c(wt ¥ g5)
F, = _TTQ\/G[(CF%)anW° B (CF*)"\V“"]C

-—

— n , 4 L(wt+B)) (60)
M; W9V°1[*(Cmf>n ww, *(Cp)a Ve ]e e

H

These represent the forces per unit span, acting on the jTh blade of a

cascade for 2-Dimensional, incompressible flow. The total forces and mo-

ments, in units. of pounds and foot-pounds respectively, can be expressed as

2 t(wt +B))
{:3 = Tgw Lg,ﬁ[lh_\% . ,Qdo(,]e

c(wt +gj) (61)

i

_ T 4 W
m; o W bﬁ[mkf + mdm,]e

where £ is an average span of the blade and Zh, Qa, m., m, are nondimen-

sional complex coefficients which can be related to the tabulated Whitehead

coefficients by comparing Eqs. (60) and (61). In fact, these relations

are,
L, = Ztce
Ly = ';‘:i ["Cn + LZ’Y’LW‘CF%] (62)
my = A [Cuy v m ]
Ma = % [ Cma “MCeq =028 C g * L2hem CF%,]
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where n defines the location of the elastic axis.

Placing the assumed solufions Egqs. (59) and the corresponding airforces
Egs. (61) into the equations of motion, Eqgs. (58), results in two complex
homogeneous equations in Yo and do. For non-trivial solutions of W, and Ay
one seeks appropriate values that make the resulting complex determinant equal
to zero (both real parT-and-imaginary part, simultaneously). This then re-
presents the flutter traveling wave solution given by Eq. (595.

Coup led bendihg—Torsion solutions of the type described above, were
carried out extensively by Friedmann and Bendiksen in Ref. 6. These used
Whitehead's 2-Dimensional, incompressible cascade theory, and required
considerable numerical computation to match the required conditions and to
arrive at the minimum flutter speed, for a given configuration. Some
typical results from Ref. 6 are given in Fig. 8 showing the effects of
static unbalance on the flutter speed. Considerable reduction below the
pure torsion flutter case is possible for some configurations.

The coupled bending-torsion flutter described in this section can be

characterized as a "Two Degree of Freedom, Traveling Wave Flutter".

The phase angle ¢ between the bending and torsion motion in Egs. (59,
plays an important role in allowing flutter fo exist. This structural
coupling angle ¢ is free to be determined here from the two mode analysis,
and often turns out to be in the neighborhood of 90°. The structural
coupling angle ¢ between the bending and torsion motions, should not be
confused with the interblade phase angle B, which remains a separate
parameter in these equations. This kind of two mode analysis is applicable

for thin blades, without shrouds, mounted on comparatively rigid disks.
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It should be mentioned that the use of Theodorsen's 2-dimensional,
incompressible, single airfoil theory, Ref. 5, will lead to flutter insta-
bility for these coupled bending-torsion cases. This is in contrast to
the pure bending and pure torsion case where flutter does not occur.

Also, it should be remarked that a limited number of such two degree‘of

freedom analyses were claimed to have been performed by Whitehead in Ref.
4, and found to have little effect on the single degree of freedom calcu-
lations. The'work of Friedmann and Bendiksen, Ref. 6, seems to have ex-

plored these two degree of freedom solutions on a much larger scale, and

over a wider range of parameters.
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PART B: FLEXIBLE DISK

Assume a balanced, tuned rotor with a flexible disk. The blades
also may have shrouds connecfihg them. Structural coupling as well as
aerodynamic coupling exists between the blades. See Fig. 9: The vibration
modes of the overal! blade-disk system will first be described, in terms
of both standing waves and traveling waves. AThen,‘a traveling wave

flutter analysis will be performed.

9. Description of Vibration Modes

For the flexible, interconnected blade-disk assembly, one can obtain
the overall vibration, modes by a finite element analysis. There will
generally be ftwo standing wave vibrafion modes q and ay for a given
nodal diameter n, which corresponds to sin n8 and cos n6 disk modes.

The basic equations for a given nodal diameter n can be written as,

M zé. + Cltél + K %q | = CQ,

(63)
For the IS* mode q above, the deflection and angle at any blade j is,
W.i = (bl"ong) %I
(64)

% = (fxccn_@:) + O(SMQJ)%,
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where b = semichord of reference station, and ho, ac, o, are nondimensional
quantities that are found from the overall vibration modes of the disk
assembly. See Fig. 10. The overall M, C, K corresponding to this mode
can also be evaluated from the standing wave, finite element vibration
analysis. It is to be noted from Eq. (64) ThaT'q’ and a5 here are non-
dimensional coordinates.

In the above representation, the 0, and as give how much the angle at
the blade chaﬁges for a given blade deflection, bho. For example, for a
flexible rotor with blades having their C.G. coincide with the blade
elastic axis, a flexible disk deflection of the n+h circumferential mode

wb cos nb, would cause a blade deflection and twist of the form,

w = ( Wy Aun 3+ VVB.) cow B

: ) (65)

In the above, w, is the disk deflection at the base of the blade, and w

D B
and On are additional flexible blade deflections which are excited by the

disk deflection. See Fig. ll. Hence, the ho, AL, O for this case are,

h = W2 Z + Wg

(<] l'.) b

(66)
A, = O
Xy = — X2+ oy
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1f the biade C.G. does not lie on the blade elastic axis, the inertia un-

balance SWJ will cause additional twists o proportional to w, cos nf, that

D

is, additional terms of the type, a = | Wp cos Bj, where c is some con-
stant.. Thus, . would then also be present in Eqs. (66). Similar rela-
t+ions for hO’ ac, as can be obtained when shrouds arg'presenf between the
blades. [In general, the coefficients ho, O O are obtained from a
vibration analysis of the rotor blade-disk asembly (usually by the finite
element method).

As menfioned earlier, 2 modes are present for each frequency w
corresponding roughly fto the two disk modes sin n® and cos nf. Because of
symmetry relations, the second mode,q2 nodal pattern is related to the
first mode a» by a phase shift of 90°. See Fig. 12. Thus, for the an
mode 4y, one has,

W, = :bho CO"L(BS"‘M")] 1—7_ = [bhoMBJ] 'z

X; = | Re C""l(?i - 90°) + o M(ej—‘?o")] G (67)

1

K¢ Aam B] — “sc"'-BS] %

Hence, in the basic modal Eqs. (63), the deflections and angles for any

blade | are,
Wj = (bho mﬁ:)) C‘«l + (‘okoMBJ)%L
Mj = (O\C C,ofa_Bi + A AM"BJ) Cb" (68)

+ (&, ain B — X5 o2 B ) Gz
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The corresponding generalized forces Ql and Qz for Egs. (63) can be

obtained by considering the incremental work done &W, by the aerodynamic

forces over all the blades,

W = Z’; [fj Swj + Y_ﬁj go(‘;.]

232

= 2 [F(bhoompi g, + bhaim g 3¢,) o)
+—V55 ( K CoeB) + o&smlw(sj)gf.

z

(st s3] = D0

L=

Hence, in Egs. (63), the generalized forces are

3
Q =Z (ﬁ.bhomﬁj + B G - o i )

(70)

I

23
O (Fbh ingy + Py A — ik, e pi)

3=

R,

where fJ and Ej are the forces and moments about the elastic axis.
Using Eqs. (63), (68), and (70), one can obtain the transient response
of a particular nodal diameter disk mode to any aerodynamic forces fj and

Ej over the blades. These equations are comparable to Eqs. (8) and (6)
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developed earlier in Section 3. They are useful in this form to examine
the response to forcing excitation, as mentioned earlier af the end of
Section 5.

For +he flutter analysis that will be presented in the.next section,
the simpfer traveling wave analysié will be used instead of the above

standing wave modal analysis.

10. Traveling Wave Analysis

th

The basic eduafions for vibrations in the n ' nodal diameter mode were

given previously by Egs. (63), (70) and (68) as,

Mg+ Cq v Ky, =i(ﬁ-b%m@3 + ol cre B
28 + Iy Oy A ?3> 70
MEB:L + Ci,z + Kc}z = Z; (-FJ bh, aimng] + M, X, A p)
- - in; &5 coe )
where,
Wi = (bh,covpi)q, + (bhainBj)qa
(68)

Xy = (Xcwepi+ @y AmpI) G + (RAInES — A cmB)) qa

To obtain traveling wave solutions, multiply the first Eq. (71) by

bhocos Bk, multiply the second Eq. {(71) by bhosin Bk, then add fo give,

as in Section 3.
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3

= bh, wepi

3=

(ﬂLmeﬁj + Mo, R EJMSM(;J‘)

23

+ \oLomg&Z (JFij,M(sj + M o, e B — " b(sco-o.ﬁ_))
3= . '

(72)
Recall from Section 5 that traveling wave solutions of the above can be

obtained from the standing wave Eqs. (68) by sé++ing

Lt

= §.©

(73)
<B_,_= u%,e
This would result in,

W, =

ot
e = bh, Cot B C‘,.C’—

. twt
+ L bh, ¢on Bl 7. €
b e_i(wtf 6Ll)

I

(74)

The associated twist angle dk could also be put in a similar form by first
setting,

x

]

c A, coa ¢
. (75)
Xy = QXO,ALvn.?7
This would then result in
. (ot
o, = (%, cond cmph + “o"";“""’“‘“?'eb)foe

tot
ti(%ewd Pl — Xy nind wmpl)RE
i (wt + Bl ~
. %DC(‘O Bl — )
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where one has defined from Eqs. (75),

.] z i' ~1

* . a7

Note that in obtaining ¢ from Eqs. (77), one would have more specifically,

T o, =+, X =+, then = 0 1o 90
" K ==, Xy =+, " $ = 90 to 180
(77a)
" R,=+, g=—, » ¢ = 0 to -90°
[~]
" D(c'-:‘- -~ D(ST- ~, " t#) - _570 t “'600

Corresponding to the traveling wave deflections Eqs. (74) and (76), are
the traveling wave airforces given generally in Section 8 by Eqs. (61) as,

((wt +B3)

ﬂ = Trgwlbgl_&(flh r A %)e

v €I

4

2 _ _ t{wt+ B}) (613
W
j ﬁ?w.bﬂ(lm“;1-qu)€

3|
J

For the deflection shapes Eqs. (74) and (76), one has,

&f
n

bh, 4 (78)

|
I
2
<°
co
I\
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Placing these .into Eqs. (61) gives the corresponding traveling wave air-

forces as,

-L¢ L(wt+-pkg

%] qoe

L(wt+pk) 9

£ =TTow£[9. h, + L,

J

— z —L¢
m, = TTow b4£[mklno + o,

%] q.e

With these airforces, the right-hand-side of Eq. (72) becomes

RHS. = Touw buh{mmz [2, b, + 2,6 %] bh, cow g
+ mF&Z [+ me” " JERSX XY
N m@&,Zb[mhh;*r M€ ] Xy ain i B
. M(M,% (2, h, + 2, &%] bh, 4m g;

+ AAMB,&,Z bLm h, + m cufxo

(80)

] X, Cet #’ALbn-PQ

m@,ebz Iolm h, + m, 8 4’0(]0( Amt#mBJ}
wt

(WQEJ"' L)a,m(;,)% e

Introducing the previous trigonometric relations Eqs. (7) for the summations

over J, that is, 23 23
) oty = Joam gy = L 7
'EX 3T -~
23
Z Aam B) R B) = O

)=
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The R.H.S. of Eq. (80) becomes,

. , 2 twt
R.H.S. = Tew b e bh, 9, € x

x {m@h [zk h, + A, éwu(,] ho N

i

+m€,&_ +m°((’_ o(]O( umP

) T 1

t @ Rh|m, h,t m, EL o(ofMaMwCP L=

N}Z

+aim gl [ 4, b, F R u]
*WP&[M b, +Mél¢°‘] g N,
2 N
7

-w% m, h, * m e‘%]o«aw }

(wt

R.Hs = Tr?wllfi J% bh,g, €&
. -id

x}: 6?&[1hho+ﬂue o(,)]\no
LF]L “t¢ "

l—m ho + My € X, o ¢

4 -i¢ .
+C:LF WM, h, + m e «O‘J&OM‘P}



49

which eventually reduces to,

_ L1 4o N (0wt + BA)
RHS = Tow b™ g = bh, %o € x

x {1,‘ l\j + [Kiélﬁ mhc+i¢] hXe + W\Nf}

Now, placing Eq. (82) together with the traveling wave deflection Eq. (74)

(82)

back into Eq. (72) gives,

- MW +LwC)/3/M KW_}:
30 _ (83)
= o w \:JL_?__MA

where A is a nondimensional, complex aerodynamic coefficient defined by,

— 2. -Ldﬂ ‘
A E’Q‘L\L‘b'{' Xe +W\€ ]L\o\o“l‘w\o( (84)

Equation (83) reduces to the familiar real and imaginary equations as in

Eqs. (12) and (4),

i
o

(A 2, 4 —
Rea! Eq.: “w M+ K - %ﬂ‘?w b /Q—AR (85)

Imag. Eq.: w C - —‘} Trg wz_ 54_1, KI

I
o

Further defining C and K as in Eq. (46) and introducing the mass density

ratio Y, namely,
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= 2%, w, M
. 2.
K = Muw,
(86)
}A — M
T9b L N/z.
the real equation of Egq. (85) reduces simply to,
2 2 ' i
w =a)h(1-_&> (87)
H.
As mentioned in Section 2, usually ﬂh/y << | for these rotor disks and
hence approximafely w = W, - The imaginary equation of Egq. (85) then
reduces to the sfmple criterion for instability,
< .
fs * KA © (48)
where one defines the important nondimensional aerodynamic damping,
K — - :

and ﬂi is the imaginary part of the nondimensional function A given by
Eq. (84). For instability, it is seen from Eq. (48) that the aerodynamic
damping ;A must be negative. This implies Ki must be positive.

The important part of the aerodynamic coefficient A for flutter con-
siderations is the imaginary part. This can be worked out from the general

expression for A in Eq. (84) to give,

_ . , 2
Ar = Rurh, * [(’eo(r * m;,r)md’ + (Lep* Myg) A"MCP] ho¥, Mo
(89)
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This agrees with the expression given by Carta in Ref. 2 except for some
sign differences due to different assumed directions for some of the forces
and deflections. Also, this expression together with Eq. (88) reduces to
the pure bending and pure torsion criteria given previously in Egs. (49)
and (57). I}t should be mentioned, that often The ho, ac, o coefficients
in Eqs. (64) are picked such that hO = 1. Then o and o represent the
amount of twist present for a unit hO blade deflection. See Eq. (64).

The Type.of flutter described in this section for flexible disks can

be characterized as "Single Degree of Freedom, Travleing Wave Flutter",

since it involves a single unknown coordinate 99-° ‘The critical nondimen-
sional coefficient ﬂi is a function of reduced frequency wb/V, gap to
chord ratio s/c, stagger angle &, interblade phase angle B, and structural
coupling angle ¢. The latter twoangles should not be confused. The

interblade phase angle B comes from aerodynamic coupling between the blades,

while the structural coupling angle ¢ comes from the mechanical coupling

between blades. Because of the structural coupling angle ¢, the ﬂi
- coefficient can become positive even without the aerodynamic coupling
between the blades. One can obtain flutter with single blade aerodynamics
such as Theodorsents theory in Ref. 5 if ¢ is near an angle of about 90°.
This type of flutter due to ¢ alone and B = 0, is a standing wave type
flutter.

The presence of this structural coupling angle ¢ is what mainly causes
the type of blade-disk-shroud flutter originally described by F. Carta in

Ref. 2. In general however, aerodynamic coupling B will also be present
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in addition to the structural coupling ¢. The value of B that makes the
CS + CA most negative is the flutter that would occur first. Generally

this would be for B # 0 or B # 180°, hence it would be a traveling wave

type flutter.

1. Further Remarks on Flutter

The flutter analysis for the flexible disk rotors considered in the
previous secTion,‘was essentially a single degree of freedom analysis in-
volving the single coordinate Q- In there, the flutter mode is assumed
t+o be identical to the vacuum vibration mode, thus fixing the structural
coupling angle ¢ between the bending and torsion motions to that obtained
from the vacuum vibrafioh mode analysis. However, as was seen in Section
8, it is conceivable that under some conditions, this angle ¢ may be
changed by the flutter phenomenon. To allow for this possibility, one
should perform two degree of freedom, traveling wave analyses as was done
in Section 8.

To perform such a two degree of freedom analysis, one would pick two

h nodal diameter, each

pairs of standing wave vibration modes for the n
pair consisting of a sin n0 and cos nb disk mode. One pair would be picked
with a large blade bending confribution and the other pair with a large

blade torsion contribution. Following Eq. (68), the deflections would be,
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W, = (bh, coep)) g, * (Lk,,m;sj)ch
+(bt,,cm.§j) %, + (bkoMBj) %:1

. ) L (90)
% = (O(CMP3 +°‘$"“"‘€J)CB—: + (chﬁJ‘stﬂﬁj)%L
~r . A . . ~ ~ . . Al . ~
+( % o= B) + MPQ)%l_* (D(c/ﬁ/‘wﬁj—'(xs =Bj) 3.
where al’ 62,-50, &C, &S are values associated with the second pair of
modes. The.corresponding equations of motion following Eqs. (71) would
then be
M‘&' * C%, N K%. = Z <‘C5LL»“""(‘J ree)
< J
M 56:1 + CCK,,_ + l<r§b = Z (ﬂbkow@) +>
' (91)

Mg, + %, + Kg = 5 (Fb 0 gy eo)

M, + Ch v K= 2 (fbk smpir )

Traveling wave solutions of these equations can be obtained from the

standing wave deflections Egs. (90) by setting,

cot ~ ~ W€
= % ¢ T = e €
cwt ~ it (92)

el froigot
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This would result in blade deflections,

| i (wt + ph) o o (0t Bh)
W,b, = LL‘o%oe' + l’ho%oﬁ (93)

and similarly for % - Then following through as in Section 10, one can

reduce the four equations of Eqs. (91) to two equations of the form,

l_—sz + (;a)c, + KJ bl‘\o%p el(k’t*‘@h):

J J ,
= bhcowh) (5bhconpi+-) + bh singh) (§bhaingis )

: (94)
L ~ ~ ~ oo L{wt+
[—w M +i0C + K] bh, 3,e (beres) =

;, 3 S
= bhemph) (5 bR coupir) * bhoamBR) (441, wingis-)

Equations (94) above represent two simultaneous equations in the two

comp lex unknowns 9 and 50* They are coupled together through the aero-
dynamic forces fJ and E& on the right-hand-side since these aerodynamic
forces depend on wk and a, as indicated by Eq. (93). These equations can
be analyzed and solved in the manner indicated in Section 8 for the coupled
bending. - Torsion flutter. Such two degree of freedom, traveling wave

flutter analyses for flexible rotors, represent a transition between the
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rigid disk rotor case (where the structural coupling angle ¢ is free to
be determined by the inertial and aerodynamic coupling, Section 8), and
the flexible disk rotor case (where the structural coupling angle ¢ is

assumed fixed at the vacuum free vibration mode result, Section 10).

It should be remarked that in the past, it has been customary to
assume-that because of +He large mass density ratio p of the blades and
the strong structural inTerconneéTions, the vacuum vibration mode would
not change subsfanfia1ly during the flutter condition. Hence the efficacy
of the singie degree of freedom, traveling wave analyses for blade-disk-
shroud flutter given in the previous Section 10, and which were originally
described by Carta in Ref. 2. Still, however, there may be situations
where a two degree of freedom, fraveling wave analysis may be required.

In summary, one can identify SeVeral different types of flutter
behavior,

A, 'Flutter of Blades on Rigid Disks - Here, the blades are mounted on

comparé+ively rigid disks, without shrouds. The structural coupling
angle from vacuum free vibration modes tends to be ¢ = 0°Ior 180°.
Single degree of freedom analyses as in Sections 6 and 7 can show
traveling wave flutter (B # 0 or 180°) due to aerodynamic coupling
effects between the blades, for staggered blade caées. I+ is probably
~good to do two degree of freedom analyses as in Section 8, since these
| allow the structural coupling angle ¢ to adjust itself to that required

by the flutter condition,
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Blade-Disk-Shroud Flutter - Here, the blades are mounted on flexible

disks, and may have interconnecting shrouds. The structural coup!ling
angle from vacuum free vibration modes tends to be ¢ = + 90°. Single
degree of freedom analyses as in Section 10 can show standing wave
flutter (B = 0 or 180°) due to the structural coupling angle ¢ even
without aerodynamic coupling effects between the blades (Theodorsen's
single airfoil theory, Ref. 5). 'Bu+ more likely, it will occur with
some aerodynamic coupling effects present, in which case it would
appear as a'Traveling wave type flutter (B # 0, 180°). Two degree of
freedom analyses, which allow adjustment of the structural coupling ¢
away from the vacuum vibration modes value, are probably not as impor-

tant here as for blades on rigid disks.

Stall Flutter - This involves aerodynamic coefficients that are depen-—

dent on initial angle and on amplitude of vibration. Single degree of
freedom flutter analyses are generally sufficient here, as the pheno-

menon usually involves a loss of stability of the aerodynamic forces,

rather than coupling of modes. Both steady wave or traveling wave

flutter may be experienced.

The obtaining of suitable aerodynamic force coefficients for all the

different operating regimes of a rotor disk assembly, i.e., subsonic,

transonic, supersonic, etc. is a formidable task. In a more complete

study, one would fry to account for three dimensional flow effects in the

rotor. Perhaps computational aerodynamic analyses could be of help here,
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Additionally, the flutter behavior of a rotor that is not completely

tuned, i.e., some blades are slightly different from others, may also

present some interesting local behavior, instead of the uniform traveling

wave behavior discussed here. In this connection, the standing wave form

of flutter analysis may prove useful.

2.

Conclusions

The fluffér behavior of rotor disk assemblies with both rigid and
flexible disks is reviewed in detail.

The relations between Traveling and standing wave analyses are des-
cribed in detial, and are shown to be equivalent.

The standing wave analyseé are shown to be more versatile for some
applications, such as the response to forced excitation, than the
simpler traveling wave analyses.

The separate roles of aerodynamic coupling through interblade phase
angle B, and structural coupling +hrough the structural coupling angle
¢, are described in detail.

In addition to the conventional single degree of freedom +traveling
wave analyses, some two degree of freedom +raveling wave analyses
are reviewed and described.

Extensions to forced vibration problems are indicated.
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TABLE 1: VALUES OF %, FROM WHITEHEAD CASCADE THEORY

s/c =1, £ = 0° s/c = 1, £ = 45°
B Crq % 8| Crq o
k=1, (A=2) k=1, (A=2)
0°| -.301 -.367 i | .734 - .602 i 0°| -.423 -.455 i| .910 =-.846 i
90°| -.587 -=.385 i | .770 ~1.174 i 90°| -.642 -.386 i| .772 -1.284 i
180°| -.732 -.382 i | .764 -1.464 i| |180°| -.680 -.318 1| .636 -1.360 i
270°| -.587 -.385 i | 770 -1.174 i | |270°| -.481 -.359 i| .718 -.962 i
k=.5 (A=1) k=.5 (A=1)
0°] -.303 -.183 i | .732 -1.21 i 0°| -.426 -.227 i| .908 -1.70
90°| -.672 -.037 i | .148 -2.69 i 90°| -.782 -.124 | .496 -3.13
180°| -.876 +.016 i | -.064 =3,50 1| |180°| -.846 +.035 i| -.140 -3.38
270°| -.672 -.037 i | .148 =2:69° i | |270°| -.525 +.022 i| -.088 -2.10
k= .25, (A=.5) k= .25, (A =.5)
0°| -.304 -.091 i | .728 -2.43 i 0°| -.427 =113 i | .904 -3.42
90°| -.838 +.136 i |-1.,088 -6.70 i 90°| -.930 -.085 i| .680 -7.44
180°(~1.096 +.167 i |-1.336 =8.77 i | |180°|-1.044 +.132 i |-1.056 -8.35
270°| -.838 +.136 i |-1.088 26,70 i | |270°| -.664 +.250 i |-2.00 -5.3
k=.1, (A= .2) k=.1, (A=.2)
0°| -.305 +.307 i | -.740 -6.10 i 0°| -.427 -.045 i| .900 -8.45
90° [~1.022 +.125 i | -2.50 -20.4 i 90°| -.994 -.173 1| 3.46 -19.9
180° |-1.270 +.117 i | -2.34 ~25.4 1| [180°|-1.167 +.081 i| -1.62 -23.3
270° |-1.022 +.125 1| -2.50 =20.4" 1| [270°| -.842 +.313 1| -6.26 ~16.8
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TABLE 2: VALUES OF %, FROM THEODORSEN SINGLE AIRFOIL THEORY

' . 2 Cl%
JZh = 1 -1
K.
: '
K - C k) R o
| .539 -.100 i .800 -1.08 i |
) .598 -,151 i .396 -2.39 | 2
.25 .693 ~-,185 1| -.480 -5.54 {1 | 4
o 832 -, 172 i -2.44 ~16.64 i 10
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TABLE 3: VALUES OF M, FROM WHITEHEAD CASCADE THEORY

s/c = | = 0°
B Cra Ce CMq CFq m,
k=1, = 2) o

09 .1607-.3935 i| .0626 -.8602 i|-.0544-.1854 1| -.3009-.3671 i| .510-.238 i
00 | .0868-.5768 1| ~.2679-1.2536 1|-.1526-.2254 1| -.5870-.3850 i| .751-.363 |
180 | .0395-.6602 1| -.4409-1.4382 1|-.2035-.2362 i| -.7310-.3817 1| .858-.414 i
270 | .0868-.5768 il -.2679-1.2536 i|-.1528-.2254 1| -.5870-.3850 i| .75[-.363 i

k=.5(=1)

0%.0012-.1970 i| -.2132-.4313 | |-.0548-.0926 i| -.3034-.1828 il 1.678~ .477i
90 |-.1451-.2644 1| -.7073-.5344 1 |-.1750-,0723 1| -.6722-.0372 i|2.907-1.244i
180 |-.2243-.3014 1| ~.9522~.6159 i |-,2435-.0606 [| ~-.8755+.0161 1| 3.480-1.4491
270 |-.1451-.2644 1| =.7073-.5344 i |-.1750-.0723 1| -.6722-.0372 i|2.907-1.244i

k=.25( = .5) |

09-.0416-,0985 i| -.2817-.2159 i |~.0550-,0463 1| -,3042-.0913 if 6.34 -.949i
90 -.2255-.1079 i} -.9035-,1735 1 [-.2181+.004]1 1| -.8374-.1362 | 15.63-4.56 1
180 |-.3157-,1287 1 F1.1718-.2289 1 |-.3046+.0138 i|-1.0955+.1665 i| 16.18-4.80 i
270 |-.2255-.1079 i =.9035-.1735 i [-.2181+.0041 i| -.8374-.1362 i| 15.63-4.56 i

k=.1,0(=.2)

09-.0529-.0394 i| -.3009-.0864 i |-.0550-.0185 1| -.3045-.0365 i 39.0-2.37 i
90 |-.2697-.0320 1 |-1,0425-.0262 i |-.2658+.0199 if-1.0215+.1250 i| 98.9-17.36 i
180 |-.3571-.0445 | |-1,2898-,0664 i |=-.3533+.0195 1| -1.2703+.1170 i [I13.6=15.79 i

1270 |-.2697-.0320 /i-1.0425-.0262 1 |-.2658+.0199 1|-1.0215+.1250 i| 98.9-17.36 I
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TABLE 3: + CONTINUED

s/c = 1, £ = 45°

g Cmor Cra Cma Crq Mo

k=1,(=2

0 .1697-.5045 i| .0266-1.1191 i| -.0912-.2296 i| =.4234-.4547 i| .617-.262 i
90| .0620-.5658 1 |-.2705-1.3367 1| ~.1661-.2006 1| -.6415-.3861 1| .759-.208 1
180 | ,0239~.5998 i}-.4596-1.3020 i{ -.,1875~-.2080 i| -.6796-.3180 i| .819-.404 i
270} .1109-.5432 i |-.2243-1,0775 1| -.1218-.2309 i} -.4809-.3592 i| .687-.492 i

k=.5=1)

09-.0266-.2525 i| -.3140~.5611 i | =.Q917-.1147 i| -.4261-.2267 i| 2.08-.522 i
90 |-.1599-.2764 i| -.7253-.7066 || -.1987-.0671 1| -.78[8-.1236 i| 3.20-.307 i
180 }-.2192-.2797 i{ -.9309~.5779 i { =.2334~,0506 I| ~-.8458+.0345 i| 3.40-1.37 i
270 |-, 1191-.2398 i| ~.6193-.3617 1| -.1404-.0731 i| -.5242+.0221 i| 2.38-1.92 i

k=.25( = .5

09-.0756-.1263 i| ~.3989~.2808 i | =.0919-.0573 i| -.4269-.1133 i| 7.92-1.04 i
90 |-.2292-.1408 i | -.8986-.4302 i | -.2380-.0212 i| -.9300~.0842 i| 14.4+1.12 i
180 {~,2961~.1282 i |-1.1070-.2466 i | -.2882+.0062 i|-1.0444+.1315 i| 15,5-4.06 i
270 |-.1968-.0866 i | -.7829+.0079 i | -.1813+.0110 i| -.6638+.2492 i| 10.6-8.20 i

k=.1,(=.2)

09-.0894-,0505 i | -.4226-.1123 i | ~.0920~.0229 i| -.4271-.0453 i| 48.8-2.60 i
90 |~,2533~,0740 || -.9634-.3199 i | -.2589-.0232 i| -.9933-.1730 i| 93.8+24.9 i
180 |~.3244-.0484 1 |-1,1810-.0882 i | -.3220+.0103 i|-I.1669+.0808 i[105.2-12.2 i
270 |-,2367-.0064 i | ~.8966+.1897 i | =.2274+.0395 1] ~.8419+.3126 i 80.0—48.2"







63

TABLE 4: VALUES OF m, FROM THEODORSEN SINGLE AIRFOIL THEORY

moo= Loy [c‘.m_—_;_},; + Cw
3 2 % 4
k C(k) md blw
1 .539 - 100 i 14 - 3310 !
.5 .598 - L1510 1 | 2.67 - 1.0l i 2
.25 .693 - 185 i [ 11,58 = 3,57 i 4
L ..832. - .1721 | 84,2 -.18.0.1" | 10
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N = 23

All blades identical

Location oF' 3“‘ blade, 0. = .._...J

FIG, 1: TUNED ROTOR WITH A RIGID DISK
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J= 4 — |

T W, = W, cos Bj cos wt
=3 .
i=2

J==1
J=-2
J=-3

End View

FIG, 2: STANDING WAVE OSCILLATION PATTERN
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in space
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9 = 2y location
x N :
| of blade )

| L l 1 >
0 90 igo®  270° 3¢0° é‘
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f(6) = f, cos mb + £, sin mo
D N -
f, = funcos m(8,-52t) + £, sin m (g -at)
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FIG, 3:

fom cos m3LT + £, sin m25 ) cos mAt

amw;
fom Sih m2T5 = f,, cos m2¥ ) sin mSUt

FORCED EXCITATION OF ROTOR DISK
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FIG. 41 GEOMETRICAL LAYOUT FOR BENDING FLUTTER
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FIG, 5: AERODYNAMIC DAMPING VALUES FOR BENDING FLUTTER
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FIG, 6: GEOMETRICAL LAYOUT FOR TORSION FLUTTER
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All blades identical

il

Car

Location of j“‘ blade, - 0.

z|y

FIG., 9: TUNED ROTOR WiTH FLEXIBLE DISK
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blade

\ The deflection w

i
and angle &; 1s found
at some reference
section on the blade,

say 759 of span

CN

Fi6. 10: DESCRIPTION OF JTH BLADE OF ROTOR ASSEMBLY
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. o« -
// ben"'
o position
L~ [
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v _ original
position
Disk mode = w, cos nB
At blade location, ne = "ELj = 8,
w; deflection = (Wm sin § + wg) cos B
«, awgle = (J}i 3—6—” + “B) sin B
= (~.V‘Yi?;n + otB) sin Bj

F1. 11: BLADE DEFLECTIONS FOR FLEXIBLE ROTOR DISKS
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Ws = bho cos 63

w; = bh, cos((si—‘io")

bh, sin @]

The two modes ave shifted by 90

FIG. 12: SYMYETRY RELATIONS FOR STANDING WAVE MODES






